Characterization of the inaA gene and expression of ice nucleation phenotype in Pantoea ananatis isolates from Maize White Spot disease.

نویسندگان

  • A M Miller
  • J E F Figueiredo
  • G A Linde
  • N B Colauto
  • L D Paccola-Meirelles
چکیده

Maize White Spot (MWS), a foliar disease caused by Pantoea ananatis, could cause up to 60% yield loss. Some strains of P. ananatis harboring the ice nucleation gene inaA catalyze the formation of ice nuclei, causing tissue damage at temperatures slightly below freezing. Little is known about the relationship between the presence of the ina gene in this maize pathogen and its expression during the phenomenon of ice nucleus formation. Here, we attempted to verify the presence of the inaA gene and the expression of phenotype in vitro. The identity of the isolates and the presence of the inaA gene were determined by P. ananatis species-specific primers. The expression of the inaA gene was assessed in vitro by the visualization of ice-crystal formation in water at subzero temperatures. A total of ninety P. ananatis isolates from MWS lesions were characterized. The presence of the inaA gene was confirmed by gel electrophoresis of the 350-400-bp PCR products. The inaA primers did not lead to DNA fragment amplification in three isolates. The ice nucleation phenotype was expressed in 83.34% of the isolates carrying the inaA gene. Our study showed that the ice nucleation in P. ananatis isolated from MWS lesions was dependent on the presence of a functional ina gene in the genome. We also found evidence indicating that some P. ananatis strains have a mutated form of the inaA gene, producing a non-functional ice nucleation protein. This is the first report on inaA gene characterization in P. ananatis isolates from Maize White Spot.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genomic variability of Pantoea ananatis in maize white spot lesions assessed by AFLP markers.

Measures to control maize white spot (MWS) caused by Pantoea ananatis are preferentially based on resistant cultivars. A lack of knowledge on the genetic variability of pathogens could interfere with the development and utilization of controlling strategies in this pathosystem. The main goals of this study were to investigate the genetic variability of 90 P. ananatis isolates from three differe...

متن کامل

Evaluation of Ice Nucleation Activity (INA) and INA Gene Detection in the Bacteria Isolated from Pistachio Trees in Kerman Province, Iran

IIce nucleation active (INA) bacteria are common epiphytic inhabitants that cause frost damage in many plants in the near-zero temperatures. Yet, no studies were found in ice nucleation bacteria associated with pistachio trees. In our earlier study some INA strains were identified and reported. These were assigned as Pseudomonas fragi, P. putida, P. moraviensis and<em...

متن کامل

Draft Genome Sequences of the Onion Center Rot Pathogen Pantoea ananatis PA4 and Maize Brown Stalk Rot Pathogen P. ananatis BD442

Pantoea ananatis is an emerging phytopathogen that infects a broad spectrum of plant hosts. Here, we present the genomes of two South African isolates, P. ananatis PA4, which causes center rot of onion, and BD442, isolated from brown stalk rot of maize.

متن کامل

Properties of a novel extracellular cell-free ice nuclei from ice-nucleating Pseudomonas antarctica IN-74.

Some ice-nucleating bacterial strains, including Pantoea ananatis (Erwinia uredovora), Pseudomonas fluorescens, and Pseudomonas syringae isolates, were examined for the ability to shed ice nuclei into the growth medium. A novel ice-nucleating bacterium, Pseudomonas antarctica IN-74, was isolated from Ross Island, Antarctica. Cell-free ice nuclei from P. antarctica IN-74 were different from the ...

متن کامل

Production of Ice Nucleation Deficient (Ice-) Mutants of the Epiphytic Strains of Erwinia herbicola

To mutate the Ice Nucleation Active (INA) gene in Erwinia herbicola strains, Tn-5 transposon carried by Psup2021 plasmid was used. This plasmid was transferred to the bacterial cells by electroporation. Electrotransformation was carried out for 2.5 ms at 1800 v and 1 mm distance between the electrodes. Polymerase chain reaction was used for determination of presence or loss of INA gene, using a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 15 1  شماره 

صفحات  -

تاریخ انتشار 2016